Localisation of Vertebrae on DXA VFA Images using Constrained Local Models with Random Forest Regression Voting
نویسندگان
چکیده
Osteoporotic fractures are associated with significant morbidity, mortality and public health costs, and will increase with an ageing population. Many osteoporotic vertebral fractures (VF) present on images do not come to clinical attention or lead to fracture prevention treatment. Furthermore, DXA vertebral fracture assessments (VFA) are often reported subjectively by a radiologist or other clinician. VFA computer-aided systems offer potential advantages. Methods based on statistical shape models (e.g. active appearance models, AAMs) have been used to segment vertebrae in radiographs and DXA VFA. However, results achieved using AAMs exhibit significant numbers of large errors due to model fitting failure, particularly on more severely fractured vertebrae. We evaluate an alternative algorithm, the Random Forest Regression Voting Constrained Local Model (RFRV-CLMs), which has proved more robust and generalizable than AAMs in annotation of landmarks on various clinical images; we investigate whether this will reduce the number of fitting failures in vertebral segmentation.
منابع مشابه
Localisation of Vertebrae on DXA Images using Constrained Local Models with Random Forest Regression Voting
Fractures associated with osteoporosis are a significant public health risk, and one that is likely to increase with an ageing population. However, many osteoporotic vertebral fractures present on images do not come to clinical attention or lead to preventative treatment. Furthermore, vertebral fracture assessment (VFA) typically depends on subjective judgement by a radiologist. The potential u...
متن کاملAutomatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting
We describe a method for automatic detection and localisation of vertebrae in clinical images that was designed to avoid making a-priori assumptions of how many vertebrae are visible. Multiple Random Forest regressors were trained to identify vertebral end-plates, providing estimates of both the location and pose of the vertebrae. The highest-weighted responses from each model were combined usi...
متن کاملFully Automatic Localisation of Vertebrae in CT Images Using Random Forest Regression Voting
We describe a system for fully automatic vertebra localisation and segmentation in 3D CT volumes containing arbitrary regions of the spine, with the aim of detecting osteoporotic fractures. To avoid the difficulties of highresolution manual annotation on overlapping structures in 3D, the system consists of several 2D operations. First, a Random Forest regressor is used to localise the spinal mi...
متن کاملMulti-point Regression Voting for Shape Model Matching
Regression-based schemes have proven effective for locating landmarks on images. Most previous approaches either predict the positions of all points simultaneously, or use regressors that predict individual points combined with a global shape constraint. The former can be efficient, but such models tend to be less robust. Conversely, Random Forest (RF) voting methods for individual points have ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014